Saturday, October 31, 2009

What is Code Division Multiple Access (IS-95 CDMA)

Code Division Multiple Access (CDMA) system (IS 95) is a digital cellular system that uses CDMA access technology. IS-95 technology was initially developed by Qualcomm in the late 1980’s. CDMA cellular service began testing in the United States in San Diego, California during 1991. In 1995, IS-95 CDMA commercial service began in Hong Kong and now many CDMA systems are operating throughout the world, including a 1.9 GHz all-digital system in the USA that has been operating since November 1996 (Fig. 1).

Fig. 1: CDMA Tower

Spread spectrum radio technology has been used for many years in military applications. CDMA is a particular form of spread spectrum radio technology. In 1989, CDMA spread spectrum technology was presented to the industry standards committee but it did not meet with immediate approval. The standards committee had just resolved a two-year debate between TDMA and FDMA and was not eager to consider another access technology.

The IS-95 CDMA system allows for voice or data communications on either a 30 kHz AMPS radio channel (when used on the 800 MHz cellular band) or a new 1.25 MHz CDMA radio channel. The IS-95 CDMA radio channel allows multiple mobile telephones to communicate on the same frequency at the same time by special coding of their radio signals.

CDMA radio channels carry control, voice, and data signals simultaneously by dividing a single traffic channel (TCH) into different sub-channels. Each of these channels is identified by a unique code. When operating on a CDMA radio channel, each user is assigned to a code for transmission and reception. Some codes in the TCH transfer control channel information, and some transfer voice channel information.

The control channel that is part of a digital traffic channel on a CDMA system has new advanced features. This digital control channel (DCC) carries system and paging information, and coordinates access similar to the analog control channel (ACC). The DCC has many more capabilities than the ACC such as a precision synchronization signal, extended sleep mode, and others. Because each CDMA radio channel has many codes, more than one control channel can exist on a single CDMA radio channel and the CDMA control channels co-exist with other coded channels that are used for voice.

The IS-95 CDMA cellular system has several key attributes that are different from other cellular systems. The same CDMA radio carrier frequencies may be optionally used in adjacent cell sites, which eliminates the need for frequency planning, the wide-band radio channel provides less severe fading, which the inventors claim results in consistent quality voice transmission under varying radio signal conditions. The CDMA system is compatible with the established access technology, and it allows analog (EIA-553) and dual mode (IS-95) subscribers to use the same analog control channels. Some of the voice channels are replaced by CDMA digital transmissions, allowing several users to be multiplexed (shared) on a single RF channel. As with other digital technologies, CDMA produces capacity expansion by allowing multiple users to share a single digital RF channel.

The IS-95 CDMA radio channel divides the radio spectrum into wide 1.25 MHz digital radio channels. CDMA radio channels differ from those of other technologies in that CDMA multiplies (and therefore spreads the spectrum bandwidth of) each signal with a unique pseudo-random noise (PN) code that identifies each user within a radio channel. CDMA transmits digitized voice and control signals on the same frequency band. Each CDMA radio channel contains the signals of many ongoing calls (voice channels) together with pilot, synchronization, paging, and access (control) channels. Digital mobile telephones select the signal they are receiving by correlating (matching) the received signal with the proper PN sequence. The correlation enhances the power level of the selected signal and leaves others unenhanced.

Each IS-95 CDMA radio channel is divided into 64 separate logical (PN coded) channels. A few of these channels are used for control, and the remainders carry voice information and data. Because CDMA transmits digital information combined with unique codes, each logical channel can transfer data at different rates (e.g. 4800 b/s, 9600 b/s).

CDMA systems use a maximum of 64 coded (logical) traffic channels, but they cannot always use all of these. A CDMA radio channel of 64 traffic channels can transmit at a maximum information throughput rate of approximately 192 kbps [14], so the combined data throughput for all users cannot exceed 192 kbps. To obtain a maximum of 64 communication channels for each CDMA radio channel, the average data rate for each user should approximate 3 kbps. If the average data rate is higher, less than 64 traffic channels can be used. CDMA systems can vary the data rate for each user dependent on voice activity (variable rate speech coding), thereby decreasing the average number of bits per user to about 3.8 kbps [15]). Varying the data rate according to user requirement allows more users to share the radio channel, but with slightly reduced voice quality. This is called soft capacity limit.

In 1997 the CDMA Development Group (CDG) registered the trademark cdmaOne TM as a label to identify second-generation digital systems based on the IS-95 standard and related technologies.

0 comments:

Post a Comment

 

WiMAX- technology, news, training, project and WiMAX conferences Copyright © 2009 WoodMag is Designed by Kamrul